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The age-structure of a population, and the distribution of sexual behavior accerding to age, are
significant factors determining the spread of the AIDS epidemic. The threshold conditions for
age-structured models account for life-history information, and thus differ significantly from their
age-independent counterparts. We examine the threshold conditions for four general age-structured
modets of the spread of HIV in a homosexual population: three with random partner selection and one
with biased partner selection. We consider both discrete and continuous risk groups, and the duration
of infection. Susceptibility and infectiousness are treated separately, and the infectivity varies with
duration of infection. Through specific examples, we examine the sensitivity of the threshold conditions
to the population age-structure and the shape of the infectivity profile. The effects of each are of the

same order of magnitude.

1. Introduction

The retrovirus, human immunodeficiency virus
(HIV), which causes AIDS has spread into nearly all
countries of the world. The most heavily hit regions
find themselves essentially under siege by this invari-
ably fatal retrovirus. It has been estimated, for
example, that in some regions of central Africa up to
20% of the population is infected (Piot ef al., 1990;
HIV/AIDS surveitlance database), and that in the
Bronx in New York City 13% of men and 7% of
women aged 25-40 years are infected. AIDS has
become one of the top ten leading causes of death in
the USA for children ages 1-5 and young adults of
both sexes (Chu er al., 1990; Kilborne ef al., 1989,
1990; Morbidity and Mortality Weekly, 1990). With
no cure in sight, the repercussions of this epidemic
will be enormous.
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HIV is spread almost exclusively by sexual contact,
needle-sharing, and blood transfusions, and from
mother to infant prior to birth or by breast-feeding.
It is occasionally spread by accidents involving blood,
and other contact with body fluids, such as the cases
in Russia where infection was spread from infants to
their mothers via breast-feeding {(Pokrovsky ef al.,
1990).

Different transmission modes are dominant in
different regions of the world. Heterosexual inter-
course is driving the epidemic in Africa. In the USA
and Europe the epidemic has spread primarily by
homosexual intercourse and the sharing of needles by
intravenous drug users (IVDUs), although there are
preliminary indications, such as the highly publicized
infection of Magic Johnson, that there is a shift to
heterosexual spread in the most heavily hit regions of
the USA.
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The biological and sociological factors driving this
epidemic are complex. AIDS may occur as early as 2
years after infection, but some infected individuals are
symptom-free 12 years after infection. The mean time
from infection to AIDS for adults is at least 7 years.
The probability that a single sex act will transmit the
virus seems to depend on a plethora of poorly under-
stood factors, including age and the presence of other
sexually transmitted diseases. The rate and pattern of
spread of any sexually transmitted disease is affected
by the distribution of partner acquisition rates in the
population (Hethcote & Yorke, 1984; Anderson et al.,
1986). Homosexual men with high partner acquisition
rates are much more likely to be infected with HIV
than men with low rates. Social networks and distri-
butions of sexual and drug behaviors in the popu-
lation are difficult to study, and little good data have
been collected.

Mathematical models of the transmission dynamics
of HIV have proven useful in providing a logical
structure within which to incorporate knowledge and
test assumptions about this complex epidemic. Model
results demonstrating the important role played by
social mixing patterns and variable infectivity have
spurred attempts to collect data on these two ques-
tions. Model simulations have helped epidemiologists
understand such questions as the relative risks pre-
sented by oral and anal sex, the reasons for uncertain-
ties in predictions of future AIDS cases, and the
interactions between other sexually transmitted dis-
cases and HIV. Transmission models are beginning to
help with the design of intervention programs,
demonstrating the danger that lies in procrastination:
earlier interventions save many more lives than later
interventions.

The first models of HIV transmission were pub-
lished in 1986. Pickering er al. (1986) noted that the
data on rectal gonorrhea provided an important
source of information about sexual behavior change
among homosexual men, if it were properly deci-
phered through a model of its spread. Anderson et al.
(1986) presented models which accounted for the
duration of infection and the continuous variation in
sexual behavior, such as the number of sexual part-
ners, seen in sexual behavior studies. Following on the
work of Anderson et af. (1986), Hyman and Stanley
(1988) added an infectivity which depends on the
duration of infection and relaxed the assumption of
random mixing between people with different risk
behaviors. A similar model of biased partner selection
was developed by Jacquez et al. (1988) for discrete
mixing groups. Dietz (1988) presented a model which
took a different approach, and looked at the import-
ance of the duration of relationships. Modelers have

extended these early models to study the spread of
infection by intraveneous drug users, heterosexual
sex, and the importance of role separation and behav-
ior changes, Sattenspiel (1990) provides a compre-
hensive review of many of these developments, as well
as of the uses of mathematical models in understand-
ing the transmission dynamics of other infectious
diseases.

Models of the spread of infection in African
countries by heterosexual sex, blood transfusions, and
perinatal transmission include age-structure (Bon-
gaarts, 1989; May et al.,, 1989; Stanley et al., 1991).
Age-structure is an important determinant of sexual
activity levels and partner selection. In this paper, we
present models for the spread of HIV infection in
homosexual populations which imbed the ecarlier
models of Anderson et @l. (1986) and of Hyman and
Stanley (1988) into an age-structured format.

The goal of this paper is to examine, in a prelimi-
nary fashion, how age-structure affects the spread of
HIV infection. We formulate four models for HIV
spread in populations of homosexual men. In these
models the population is subdivided into uninfected
people, infected people, and people with AIDS. In the
first three models, we assume that partners are chosen
randomly, which leads to proportionate mixing. The
fourth model relaxes this assumption, and allows for
special cases of non-random partner selection. We
determine the threshold conditions and stability of the
infection-free equilibrium for each of these models,
and demonstrate the impact of age-structure on these
conditions.

The threshold condition specifies critical conditions
for an epidemic to grow or die out. The threshold
conditions are characterized by the average reproduc-
tive number: the average number of secondary infec-
tions produced by one infected individual in the early
stages of an epidemic. If this average reproductive
number exceeds unity, then the infection can maintain
itself within the population, otherwise the epidemic
dies out (Dietz, 1976, 1985; Anderson, 1982; Ander-
son & May, 1985, 1987; Diekmann et al., 1989).
Analytically derived threshold conditions provide in-
formation about the sensitivity of the epidemic to
changes in parameters, without the need for a com-
plete numerical exploration of parameter space.

In most simple homogeneous epidemiological
models, where all the individuals are assumed to be
identical, the average reproductive number can be
defined as the product of the transmission probability
and the duration of the infectious period. However,
in heterogeneous populations the threshold con-
ditions are more complex and additional factors must
be included (Hoppensteadt & Murray, 1981; Dietz &
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Schenzle, 1985; Castillo-Chavez et al., 19894, b;
Hethcote et al., 1989). Little theoretical work has been
done on complex AIDS models. Of notable exception
is the work of Castillo-Chavez and his collaborators
(Castillo-Chavez et al., 1989q; Thieme & Castillo-
Chavez, 1989), who have determined threshold con-
ditions, and other properties, for models with variable
duration of infection, and infectivity which varies
with the duration of infection; and of Busenberg and
Castillo-Chavez (1991), who extend this work to
models with age-structure.

In the next three sections of this paper we develop
threshold conditions which are similar, but slightly
more general than those of Busenberg and Castillo-
Chavez (1991). All of these threshold conditions are
for models with proportionate mixing. We then de-
velop a threshold result for a model with non-random
mixing. We discuss the effect that age-structure has on
the mathematical form of the reproductive number,
and then use specific examples to examine the sensi-
tivity of the threshold conditions to the age-structure
of the population and the distribution of infectivity
with duration of infection,

The results we obtain improve our understanding
of the complexities behind the AIDS epidemic. How-
ever, although these models are more realistic than
earlier ones, we have made many simplifying assump-
tions, and extreme caution must be used in making
even qualitative assessments of the epidemic based on
these results.

2. The Discrete Risk Group Model

Consider a population of homosexual men who are
not in a mutually monogamous life-time relationship
and are engaging in sex with other men. This at-risk
population consists of uninfected susceptible men,
infected men without AIDS, and men with AIDS.

For this first model each infection category is
distributed over age and then subdivided by risk level
into L discrete classes: i=1,2,...,L, with i =1
being the risk level with the lowest partner acquisition
rates at a given age and { = L the highest (the more
realistic continuous-risk case is considered in Section
4). Individuals are assumed to belong to the same risk
group throughout their sexuaily active lifetimes. By
neglecting flows between risk groups, we are neglect-
ing the effect of behavior changes resulting from
AIDS education and life-cycle events like divorce. We
account for some age variations in behavior by
allowing the partner-acquisition rate of each risk
group to depend on age.

Denote the distribution functions of uninfected and
infected people with risk i and age a by U,(+, a) and

I(t, a), where ¢ is time. These functions are such that
the number of uninfected or infected people in risk
group i with ages between a, and a, is the integral
from a, to a, of U.(t,a) or L(t, a), respectively. We
neglect transmission of the virus by men with AIDS
(because they form a small portion of the infected
population and most are practicing safe sex or have
become sexually inactive) and combine all risk groups
into one AIDS category A (¢, a). We neglect migration
between populations, and assume that the only re-
cruitments into the population are a constant inflow
of uninfected men. We also assume that all infected
people are infectious and will eventually develop
AIDS,

Under these assumptions, the dynamics of the
population are governed by the following system of
equations and associated boundary conditions:

% + % = Afa) — (u(a) + 4 (t, aDU,,
Ut a) = B, .

L U(0,a) = ,(a);

%_'_%: —{pla) +ylanli+ 4,1, A)U,,
Y L a) =0, (o)
L 10, a) = ¥ (a):

36_1: +?3_j= —5(a)4 +?(a)§] I
p Al a) =0, (1c)
L A0, a)=0;

where u = the attrition rate due to natural death or
movement out of the sexually active population;
A; = infection rates; B; = rate at which uninfected men
flow into the i-th risk group at age a,; A,(a) = the rate
at which uninfected men flow into the population at
ages greater than g;; y =rate of developing AIDS;
6 = death rate due to AIDS; and ¢, and ¥, are the
initial distributions of the uninfected and infected
populations.

We consider infection rates that can be represented
as

da’,
(2)

with the total sexually active population in risk group
J given by

i=1

Mtay=Y J Bila.a)m,la, a’, t)fl\lf-((r;i’))

Ni(t,a)=Uflt.a)+ L1, a).



12 J.M. HYMAN ET AL.

Here f.(a,a’), the transmission probability, is the
probability that an infected person of age a’ in risk
group j will infect an uninfected partner of age a in
group i during their partnership; m;{a, a’, t} is the rate
of pair formation between people of age a in the i-th
risk group and people of age a’ in the j-th risk group;
and I;/N, is the probability that a randomly selected
partner from the j-th risk group is infected.

We assume the transmission probability is the
product of the susceptibility of the uninfected person
(the probability that he gets infected given that he is
exposed to virus) and the infectiousness of the in-
fected individual (the probability that the infected
individual sheds virus}. Each of these may depend on
the type of contact or the presence of other sexually
transmitted diseases, and therefore on the risk groups
of the two participants. They may also both depend
on age. However, in order to keep the analysis of
the model tractable, we allow susceptibility to be
age-dependent, but make the somewhat restricting
assumption that infectiousness is apge-independent.
Hence B, =s5,ff#(a) where s, and f; are constants
which describe the susceptibility of an uninfected
individual in the i-th risk group and infectiousness of
an infected individual in the j-th risk group.

In order to simplify the analysis, we assume that
there are no strong biases at work, and partners are
chosen at random, according to their availability (this
unrealistic assumption 1s relaxed in Section 5). The
random partner selection process leads to a propor-

tionate mixing rate, m,, of the form
; (aWN.(t.a’
ﬂ,j(a,a', t) = Lr}(am)rj(a ) J( - ) L] (3)
2 r(@)N (1, o)} da
k=1 Jaup

where r;(a) is the partner acquisition rate of people of
age a in the i-th risk group.
Under these assumptions, the infection rate is

At ay = jiﬂ(a)rj(a)
Y| r(@N(,a)dx
k=1 Juay
L S
X Zﬁj ra)i{t,a’)da’. (4)
J=1 ag
In the absence of infection, A4 =0 and

(Ui(t, a), I(t, @), A(t,a)) > (U (a),0,0) as - o0,
where the steady-state uninfected population is

Ul(a) = Be~ M@ 4 g~ M '[ e"94,(x)dx, (5a)

4p

with

M) = 'f " u(s) ds. (5b)

If this infection-free equilibrium is a stable solution
of (1}, then introducing a small number of infected
people into the equilibrium population will not result
in propagation of an epidemic. On the other hand, if
the equilibrium is unstable then an initial infection
will grow and persist. We proceed to determine the
threshold condition which defines the change in
stability.

In order to study the stability of this equilibrium,
we linearize the system (1) and (4) around (U/?, 0, 0).
Let u,(t, a) = U(t, a) — U%(a),

Ni(t,a)=Uj(a) + uft,a) + L(t,a) = U}(a), (6)
and define 1.(4, @) as the linearization of the rate of
infection, A,(z, a):

- s; ﬁ(a)r (a)
A‘r‘(!! ) o
>} 1

In this expression, U}, is the total uninfected popu-
lation at the equilibrium, and ¢{r°) is the mean partner
acquisition rate at equilibrium:

= Z

Tk 1 Jag

f'[ ri(a)(t,a)da’. (7)

rk {(a)UR () da, (8a)
where
U2(a) da. (8b)

vy= ¥

The linearized approxlmatlon of (1) can now be
written as

Wy O gl VN, (O2)
7] T ~
+ + 5 = — (@) + y(@); + A(t, a)U}(a), (9b)
dr  Ga
04 04
o T3 = ~o@4 @, (9c)
with boundary conditions
u(t,ag) = L(t, ay) = A8, a5) = 0. (9d)

In these equations A(f,a) —0as r = oo if and only
if I(t,a)—0(=12,..., L) Since the dynamics of
A{t,a) do not affect the dynamics of w,({r,a) and
I.(z, a), the behavior of eqns (9a) and (9b) determines
the asymptotic behavior of the full system (1).

To estimate the initial growth rate, we assume that
the solutions of (9) grow (or decay) exponentially with
time:

u(t, @) = i (@)ev -,
I(t, a) = T(a)es" ), (10)

where #{a) and T(a) are functions which describe the
age distribution of the population near the trivial
equilibrium.



CONDITIONS FOR THE SPREAD OF HIV i3

Defining two age-independent functions of the
infected populations,

ag

and

L
W=y w, (11b)
i=1

and substituting (10} into (9), we obtain a system of
equations for #(a) and [{a):
di
uf;fza) = —u(a)i(a) — bi(a)e” W,

df; 7
g?)=—n«w+vwnnwy+awk“Wl(Uw

The age- and risk-dependent coefficients, b,(a), are
given by

(12a)

bia) = 5,8} (a)0%a), (12¢)

where we have normalized the equilibrium population
distribution by the total equilibrium population, and
the partner acquisition rate by the mean partner
acquisition rate:

U3 (a) ri{a)
us ’ &
From this we see that the b,(a) are known quantities

which are all independent of the growth rate c.
Solving (12b) for [;(a), we have

0%a)= ita) =

(13)

Ia)=Ww 'r Pa, s)b(s)e" ds, (14a)
where ®
P(a,s)=exp(~M(a)—T(a)
+ M(s)+ I'(s)), (14b)

Summing this over i and substituting into (11b) gives
an equation for W in terms of itself, which allows us
to define the threshold condition for stability of the
infection-free equilibrium:

l’3"‘:.‘('51)

W=w<{ iﬂj
i=1

0

X j P(a, s)e"“9b,(s)ds da = WR(c). (16}
L]

There exists non-zero solutions W to (16) if and
only if R(c)=1 for some c. In order to determine

under what conditions the curve R(c) crosses 1, note
that

dR() o & (=,
= Zf.-j Fia)

i=1 ay

x I P(a,s)e" ¥ Ha —s)b(s)dsda (17)
a0

is always negative if any U? () is non-zero. Therefore
R(c) is monotonically decreasing. Since R(c)— + o0
as ¢— +a, R(c)=1 at some unique real root
c*. If R({0)<1 this root is negative, and
I(t,a) = I{a)e" @0 as 1 - 0. Using I(a) from
(14) and solving for & (a), as ¢ = 00, we have that
u(t,a)—0, I(t,a)—0 and, therefore, A(t,a)—0,
which gives the stability of the equilibtium. Simi-
larly, if R(0) is greater than 1, then ¢*>0 and
the equilibrium (U?(a), 0, 0) is unstable.

Summarizing the above, we have

2.1. THEOREM: Define the reproductive number for
eqn (1) to be

ko] LI

R="Z

ZI {S-Js r ri(a) I B )r(s)P W, YU (Y) d da}

i=1 Ja

L o0
Y| r(@UNa)da

{18a)

@)= rv(v)dv- (140)

%
Note that if a person is infected at age a’, then
e~ + e s the probability that he has not developed
AIDS by age a.

By substituting (14} into (11a), we obtain a new
expression for w;:

w,= Wf,fw Fi(a) ju Pla, s)b(s)e“~ds da. (15)
a %

where U'(a) is given by eqn (5). Then if R>1, the
AIDS epidemic persists, if R < 1, the epidemic dies out.

Note that R is independent of the total initial size
of the uninfected population and it can be rewritten
in terms of the normalized quantities defined in
eqn (13) as

R=¢ Y {sm f ’ j BW@

ag oo

x F()P (Y, a)TY) dy da} (18b)
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where the population size cancels out. The factor (r*»
indicates that R increases with the mean risk in the
population. R also increases with increasing trans-
mission probabilities and with increasing time from
infection to ATDS (the incubation period !/y), (Note
that the relative susceptibility s; and the relative
infectiousness f; appear as a product and thus play the
same role.) If the parameters g, 3, r;, and B are all
independent of age and the susceptibility and trans-
missibility are independent of risk (s,= 1, f;= 1), then
our result reduces to that of the age-independent
model of Anderson et al. (1986), namely that
X
R=20D (19)
rHuty

where E(r%) is the second mean of the risk,
LE, r}{z U%y) dg. This well-known formula shows
that the variance in the risk affects the threshold
condition as much as the mean risk. Often, eqn (1%
has been assumed to express the reproductive number
for any random-mixing AIDS model. However, as we
shall demonstrate in Example (i), the actual reproduc-
tive number for our age-structured model given by
eqn (18) is significantly more complex than R, be-
cause the mean duration of infection, mean trans-
missibility, and risk behavior interact.

To understand the effect of age structure on the
reproductive number, we will perform a few manipu-
lations on eqn (18b). Because P(4,a) is the prob-
ability that a person who is infected at age 4 is still
in the infected population at age a,

Py = r 1@)P(a, a)da 20)

is the mean number of partners a person in risk group
{ will have after infection at age 4.

Switching the order of integration in eqn (18b) and
using definition (20) gives

L ]
R=% {j B(@)s, @YU (@) ,pAa) da)}. @n
i=1 @)
Analyzing this equation, we see that 5,7(a) is, in a
sense, the exposure risk of infection being taken by
uninfected members of group i of age a relative to the
mean population risk. Upon infection, the number of
people that they will put at risk is their infectivity
times their future number of partners, f{a)f.p(a).
These factors multiply the fraction of the initial
population in that age/risk category to give the
fraction of the population that will be at risk due to
group £, Summing over all groups and ages then gives
the reproductive number.

Even in the absence of age-biased partner choice,
age has a strong influence on R since older people will

have fewer future partners than younger ones. Thus
the infection of older people has a smaller effect on
R than the infection of younger people. Age also
cnters through the susceptibility and the current
risks being taken. These effects can be compounded.
For example, if younger people are more susceptible
and more likely to have many future partners than
older people, then these factors together increase
the reproductive number more than each taken
separately.

The effects of age are further illustrated in the
following two examples.

EXAMPLE (i)

Suppose that the attrition rate, y, the rate of
developing AIDS, y, and the transmission probability,
Bs.f, are all independent of age and risk group.
Suppose, furthermore, that the partner acquisition
rates, r;{a), vary slowly with age, and remain close
to their value at the minimum age, @,. This slow
variation can be mathematically specified by letting
¢ be a small parameter and by assuming that

r{a)=rp+ery(a) (22)

where r; (¢) remains small compared to ¢! for all 4,
and r;(a,)=0.

Under these assumptions, the mean number of
people an infected person will put at risk is

pila) =—2— + epy(a) (23a)

uty

where
pala)= J. ra(x)e” W d dy, {(23b)

Defining {r,> to be the mean risk when epsilon is
zero, {r,> 1o be the mean value of the perturbations
ra» and expanding the reproductive number in ¢, we
have

- = Bsf '[w( u ra(d)
R~Ry+e——- ), r pi(d) +——
0 <r0>i§1 ? g i .u+}l
T <"|>) A0r oy g n
- —— Widg)da, (24)
p+y <y

as ¢ »0. Here R, is the reproductive number that
would result if the partner acquisition rates were
equal to the rates at q,.

The Anderson et al. formula, R, of eqn (19). is a
poor approximation for the reproductive number in
an age-structured population with unbiased partner
selection. R, is the product of the probability of
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transmission, the mean duration of infection, and
the ratio of E(r?) to <r?, and can be expressed
as

. Bsf L
Re~Rot i 27

« r (21’,-,(&) Crg 2—:0%) 0%G)da, (25)

as ¢ — 0, The difference between this “‘expected”
R, and the actual reproductive number R is, to
order ¢,

Rk~ P, [ @ @
R—R,~c¢ <re> Z rfo‘{.aq (Pn(a) )

i=1 Hy
x U%a)da. (26)

Replacing p, with its definition, we see that this
difference depends on the term

rn(a)=
u+vy

pafa)— jw (ra(x)—ry(a))e +x-a) qy

27

If r,(a) varies substantially with age, these terms
cannot be neglected when estimating the reproductive
number. For example, it may be that sexual activity
declines with age, causing the differences to all be
negative and significantly reducing the reproductive
number below R,. On the other hand, if partner
acquisition rates first increase after age 4, and then
decrease (in a given risk group), the impact is more
difficult to predict.

To demonstrate more clearly the impact of age-
structure, we choose a specific set of parameters, and
plot the actual and *“expected” (i.e. R,) reproductive
number in the next example.

EXAMPLE (ii)

In this example all functions are chosen so that we
can analytically calculate the reproductive number
(see Appendix).

Suppose that

p=iyrs™, p=01yrs™,
5 fifla) =01 (28)

so that the mean duration of sexual activity is 15
years, the mean time from infection to AIDS is 10
years, 12 is the minimum age of sexual activity, and
B, f. and s are independent of age and risk, with
transmission occurring in one-tenth of the partner-
ships. Suppose furthermore that no men enter the
sexually active population before age 12 (B, = 0), and
that after age 12 men enter the sexually active popu-
lation at a rate which increases from zero at age 12

ay =12 yrs,

to a maximum at age a,+ 12, and then slowly
decreases back to zero:

A(a) = C,2 ¥(a — 12)e ™t~ 1Dt

i=0,1,2,..., fora>12yrs (29)

The constant C,, defines the total population size and
scales out of the reproductive number. Note that we
have assumed that the fraction of people entering
each risk level is independent of age. This is consistent
with observations that the distribution functions for
sexual behavior have a similar functional form for all
populations, even though the parameters which deter-
mine the mean and variance are different from one
population to the next.

Similarly, we assume that the partner acquisition
rate in risk group i also increases from zero at age 12
to a maximum at o, + 12 and then gradually de-
creases:

r(a)=2'C.(a —12)e~“~'2"  for a > 12 yrs. (30)

Following Colgate er al., (1989) we have chosen to
distribute the incoming population into risk groups
with mean risk r,.,=2r,, and size U}, = U?/8 in
order to be consistent with the distribution found in
many sexual behavior surveys. For moderate to high-
risk behaviors this distribution has the form r~",
where r is the partner acquisition frequency and » is
between 3 and 4 (see Hyman & Stanley, 1988). This
distribution has the notable feature that there is a
high variance to mean ratio. We have used this, and
assumed that the i-th group runs from r =2 to
r = 2*"and taken n = 4 to obtain the dependence on
i of this example.

This choice of functions allows us to obtain an
analytical expression for the reproductive number.
These calculations are presented in the Appendix. For
this example, it is easy to see that the initial growth
rate, ¢*, increases monotonically with the reproduc-
tive number. The argument goes as follows: c¢* is the
unique root of R{c) = |, where R(c) is defined by eqn
(16) and R(0) is the reproductive number. Since v is
a constant, ¢ only appears in the expression for R(c)
in the form y + ¢. We thus can write R(¢)=g(y + ¢),
and R(0)=R=g(y). R(c) is a monotonically de-
creasing function of ¢, so g(x) is monotomcally
decreasing in x, and y =g~ '(R) is monotonically
decreasing in R, Then c*=g '(I)—y=
g7 '(1) — g ~'(R) is monotonically increasing in R,

Figure 1 shows the distribution of the equilibrium
population by age for different values of the most
likely entrance age, o, + 12. For populations where
most people enter very young, the population distri-
bution is sharply peaked, while for populations with
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FiG, 1. The distribution of the population in the absence of
infection for examples {ii) and (ifi) varies with the most likely age
of entering the population. The contour level lines, spaced at
intervals of 0-005 yrs~*, show the population density in age as given
by eqn {A.2) divided by (A.3). The density distribution for a fixed
value of the enlrance parameter a,, is given by the values along a
line paralle] to the x-axis. Because most people are entering before
age 20, the distribution is sharply peaked when «, is small. It
broadens as «,, increases and people enter over a broader range of
ages. Note that, for a fixed value of «,,, the peak of the distribution
occurs at an age greater than ¢, + 12, when the inmigration
balances the constant outmigration.

older entrants it is broadly distributed. Note that
eqn (29) implies that the distribution of each risk
group over age is identical.

Figure 2 shows the dependence of the population
mean risk (measured by new partners per year) on the
most active age, o, + 12, and the most likely age of
entrance into the population, «,, + 12. Note that the
mean risk increases rapidly, and nearly lincarly, with
the most active age, and only weakly depends on the
age structure of the migration,

The reproductive number increases linearly with
the mean risk of the population and the transmission
probability, sff. To understand how the age-siruc-
ture affects R, independent of this effect, we hold the
mean risk of the equilibrium population fixed as the
parameters «,, and «, are varied (this is done through
the appropriate choice of C.). In Fig. 3 we show the
distribution of sexual behavior in the population, as
it depends on the most active age, o, + 12, for a
population with «,,= 5. From Fig. 1 we see that this
population distribution increases rapidly to a maxi-
mum at around age 26, and then slowly decays. The
largest group of sexually active men is found in the
mid-20s. The activity in this population is primarily

at young ages when g, is small, and becomes broadly
distributed when it is large. There is a trade-off
between activity levels at given ages and numbers of
people, as seen in Fig. 3.

In Fig. 4 we show the dependence of the reproduc-
tive number on the age structure of the population,
and the age structure of behavior. Most of this
behavior can be explained by the average number of
partners that men will have after infection, if infected
at the most active age, p,(«, + 12), from eqn (20).
pi(a, + 12) and the reproductive number have a very
similar functional dependent on «,, and «,. A popu-
lation which is active primarily at young ages will
still continue to have many partners after the most
active age, creating a broader dissemination of the
infection than one which is active at older ages, given
that cach population has the same mean risk.
Likewise, a population which is older also has
more partners after the most active age. This depen-
dence is reversed at larger values of «,. Since the initial
growth rate increases monotonically with the repro-
ductive number, for this example, the initial spreading
of the disease depends heavily on the number of
partners an infected person is likely to have after
infection.

Finally, in Fig. 5 we show the danger involved in
drawing conclusions which are based on assuming
that the reproductive number calculated for one
model can be used for another model. We have used
the Anderson er a/. approximate formula to calculate

an ‘“‘expected” reproductive number, R,, and
35
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=
=3
P
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g 25
8 ]
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2 20
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FiG. 2. The mean risk of the population at the infection-free
equilibrium, eqn (A.4), for examples (ii) and (iii). as a function of
the most active age, &, + 12, and the most likely age of entrance,
#, + 12. Contour levels run from 1 to 12 partners per year and
C, =1 partner per year.
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FiG. 3. The distribution over age of partner acquisitions in the population, eqn {A.6), as it varies with «, for examples (i) and (iii).
Here a,, = 5 (a most-likely entrance age of 17), and C, is determined from eqn (A.5) to ensure that the total population has a fixed mean
risk of 1 pariner per year, for every choice of «,. Contour levels are spaced at intervals of 0-01 and run from 0-0l to 0-13 partners
per square years. Note that this distribution pets broader with larger «,, but is generally weighted towards lower ages because of the
young age profile of this population: at larger values of «,,, with an older population, the peaks occur near age 26, where there are the
most people.

=
o (1]

In (reproductive number)
@
o

3
3 6 81215 =aq,,

15 \202\ 25“*-\..2 30 35 40____45

Most active age, a, + 12

Fi1G. 4. The dependence of the reproductive number for Example (i) on the most likely age entrance age, o, + 12, and the most active
age, o+ 12. Here C, is varied according to eqn (A.5), so that the mean risk of the population is 2 partners per year for all values of a,,
and «,, and the reproductive number is given by eqn {A.7). Recall that the epidemic will not spread if the reproductive number is less
than 1. The initial epidemic is very sensitive to «,. For a given a,,, and a fixed population structure, 2, determines how the sexual behavior
is distributed in the population, as shown in Fig. 3. The epidemic spreads most rapidly in populations in which the sexual activity
is concentrated in the younger members of the active population, who must be very active in order 10 maintain the population mean,
and who have many years to transfer infection after they become infected. However, increasing «,,, which both increases the average
age and broadens the age-distribution of the population, also increases the strength of the epidemic, at low a,. This effect is reversed at
large «,.
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Fic. 5. A comparison between the behavior of the actual reproductive number for example (i), R, and the Anderson e! al. formula,
R,. As in Fig. 4, the mean risk is held fixed at 2 partners per year. (a) R, for a,, = 15 yrs; (b) R for «,, = 15 yrs; (c) R, for &,, = 3 yrs; {(d)
R for a,, = 3 yrs. The dependence on population structure is similar for both R and R,. However, for small values of z, the age-structure
decreases the likelihood of an epidemic, while at large values it slightly increases the possibility of a sustainable epidemic.

compared this to the actual reproductive number, R.
The actual and expected reproductive numbers are
significantly different, with age-structure effects
generally decreasing initial spread rates,

3. Duration of Infection

Nearly all adults are free of AIDS symptoms for
the first 2 years after infection, and the probability
of developing AIDS slowly rises after that. This can
be modeled by assuming that the probability of
developing AIDS depends on the duration of
infection {(Anderson et al., 1986).

It has been postulated that the infectiousness of
individuals carrying HIV depends on the clinical
status of the individual, with a short burst of infec-
tiousness occurring shortly after infection, after which
infectiousness is generally low until the immune sys-
tem begins to be seriously affected. Although viral
loads and infectiousness are not necessarily directly
linked, there is accumulating evidence for this theory.
Circumstantial evidence is also provided by trans-
mission studies: estimates of infectiousness which
allow this variation have obtained significantly better
fits to the data than those which do not (Longini
et al., 1989; Jewell & Shiboski, 1990). Since the
probability of any particular clinical status depends
on how long a person has been infected, infectious-
ness may in turn be modeled as depending on the
duration of infection.

Hyman & Stanley (1988, 1989) and Blythe &

Anderson (1988) showed through numerical
simulations that it is important to account for
these duration of infection effects. Castillo-Chavez
et al. (1989a, b) have examined the impact of these
effects on the reproductive number. Also, Thieme
& Castillo-Chavez (1989) have shown that adding
the duration of infection to a model which cannot
support oscillations opens up the possibility for
long-term oscillations in the population sizes (see
also Castillo-Chavez er al., 19894). Intuitively, the
2-year delay before developing AIDS implies a
greatly increased pool of infected people as
compared to an exponential distribution of times
from infection to AIDS. The variation of infectivity
with duration implies that time scales are lengthened,
except among groups of people who tend to have
multiple sexual pariners during time intervals
which are small compared with the duration of
the first infectious burst, Here we examine the impact
that this dependent on duration of infection has on
the reproductive number for an age-structured model.

Let t be the duration of infection, and (¢, a, 1)
be the distribution of infected people in risk
group ¢ over duration of infection and age a. Except
for 7 dependence, the model is the same as that of
the previous section. Duration of infection behaves
mathematically the same way that age does: there is
a progression of infected people along increasing
duration of infection, and a boundary condition at
T =0, where all newly infected people enter the
infected population.
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The modified equations are:

au; 3U,-_ _
5450 = A — @ + A ),
Ui(t’ aO)'_"Br'! (313)
Uf(O! a) = ¢i(a)'
ar, ol BI,-_
v te" —~(u(a) +y(t,a)l,,
I(t,a,,0)=0, (31b)
I(t,a,0)= 4, a)U,
. I{0,a,t)=¥(a, 1)
(04 04
ar + Fria —d8(a)A
L a—ay
b, + 2 j y(z, a)j(t,a, 7) dr,
J=1,J0
A(ts aﬂ) = 09
. A(0,a)=0. (31¢c)

Note that the rate of developing AIDS, y(t, @), now
depends on both duration of infection and age. Under
the assumption that the partner acquisition rate is
independent of the duration of infection, and that
partners are selected independent of their duration of
infection, eqn (2) for the rate of infection generalizes
to

L o ffa'—ay
;Li(t!a): Z J J‘
i=1Ja 0

ﬁr‘j(a, a’, T)ﬂjj(a, a’,t)
el 1)
Ni(t,a’)

where the total sexually active population of age 2’ is

drda’ (32)

a —ay
Nt @) = Uyt ') +[

0

L{t,a’, 1) dr,

and where fi(a,a’,t} is the probability of trans-
mission from a person of age «” and duration of
infection t during a relationship with an uninfected
person of age a. Note that no person can be infected
longer than the maximum possibie time that he has
spent in the sexually active population, so that
T < a — a,. As before, we make two further assump-
tions which simplify the analysis of the reproductive
number.

First, we assume the probability of infection is
separable into four factors,

ﬂij = Sﬁﬂﬁ(“)x(f)-

Here the new factor, x(r), is a transmission factor
which accounts for variations in infectiousness as

the disecase progresses. Second, we continue to
assume that mixing is proportionate and that =
has the same form as in eqn {3). These two assump-
tions give a simplified expression for the rate of
infection
It @) = — :.-.B(a)r.-(a)
Y r(c )N (1, o) du
k=1Ja

L w 'a—ay
X Zﬁj j. ra @), a’,t)dr da’. (33)
i=1 a JO
The infection-free equilibrium of system eqns (31)
and (33) is again given by eqn (5). Linearizing
around this equilibrium, with w(t, a)=U{t,a)—
Ut(a), gives

Ou; Ou

S —u(a)u;— I,(t,a)UNa)  (34a)
a1, ol  al
= ta t5 = —Wa)+1(0, a);,
a0 =itavi@, O
4 4. 3
5 T30 = —d@H +,->.:. i ytM(t, @, ) dr.
(34c)

where A(s, a) is given by eqn (33) with N,(1,a)
replaced by U(a).

As before, the first two eqns (34a) and (34b) are
sufficient to determine the asymptotic behavior of the
full system.

Assuming that the solution initially changes
exponentially, substituting

, — (et -9
{ (1, a) t:.(a)e (35)
I(t,a,7)=[(a,1)e"" 7,
into eqn (34), and solving for I(a, t), gives
Ia, t)=T(a —1,0)e %" (36a)
where
Afa, 1) =J (@ v +a—r1)
o
+uw+a—1))dv. (36b)

Here [(a — , 0) is determined by the rate of infection.
Following a procedure similar to that of Section 2,
we define

w ffa'—ag - X
w,:ﬁj I r{aw(tM(a’, 1)e " drda’ (37)
a o0
and take W to be the sum of all of the w,. Then

Ix,0)= gﬁcx)r,-(xw?(x)e“ w. (38)
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By following the approach in Section 2, we can determine the reproductive number for the AIDS model (31):

L

F=iTt

) s}ﬁjw ri(a) J“’_“" k(t)fla —1)r(a — )e MO0 a — 1) dr da

)

= 4}
i=1Jay

As in Section 2, the epidemic spreads if infection is
introduced into an uninfected population when
R>1, and will not spread if R<1. We show in
example (iii) that the reproductive number depends
on the manner in which the infectivity varies with the
duration of infection, even when the mean infectivity
over the course of infection remains unchanged. The
time-dependent behavior might be even more sensi-
tive to these variations, as has been seen in numerical
simulations (Hyman & Stanley, 1988).

EXAMPLE (iii)

In this example, we assume that all parameters are
the same as in example (ii), except for the rate of
developing AIDS, and the factor k(z), which defines
the dependence of the infectivity on the duration of
infection. To demonstrate our point, we use an unre-
alistic choice for y{(z): we assume that there is a delay
of z years after infection, during which the rate of

(39

r(@)U}{a)da

developing AIDS is zero, and that after z years the
rate of developing AIDS is constant, at y,:

0 ifr<z,

p ifrzz (40)

?(r,a)={

This defines a hazard function which partly captures
one of the principle features of the development of
ATDS: the long delay after infection before symptoms
appear. However, since the development of AIDS
after the first 2 years will be exponentially distributed
with this choice of y(r), this distribution is not
accurate, and will underestimate the impact of the
duration of infection.,

In order to examine the impact that a variable
infectivity can have on the epidemic, we use a function
which captures some of the features of the most
popular hypothesis: a short burst of infectiousness
soon after infection, before antibodies appear, a long
period of low infectiousness during the asymptomatic

0-8

0-6¢

0-4

0-2

z=2yrs

In (reproductive number)

15 20

95 s 30 35

Most active age, o, + 12

_o——'—i""'—'-—_ ¥
40 45

e ——

—0:2} 2=0yrs

FiG. 6. The effect of the hazard function eqn (40), which describes the distribution of times from infection to AIDS, on the reproductive
number, eqn (39), of example (iii). In both cases the mean risk is held fixed al two partners per year and the mean duration of sexually
active infection is 6.2 years. The infectivity per contact is independent of the duration of infection. The 2-year delay before the development of
AIDS, described by the z = 2 case, substantially increases the probability of a growing epidemic compared to the - = 0 cases in example (ii).
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FiG. 7. The functional dependence of the infectivity on the duration of infection used in Figs 8§ and 9. The infectivity is high for the
first few months. It then remains at a low level until about 5 years after infection, and then slowly increases 1o the high level again. This
infectivity is then scaled by a constant multiplier, so that the mean probability of transmission per partner is 0-05,

phase, and higher infectiousness towards the end of
infection, We take k(1) to be

-

c—rfh lf T<T,

e~k ifr, <1 <1y,

K(D) = e 4 (g — o i) LT
TH—1T

k, ifr;<1,

§ )

ifr,<t<1,,

where 1, <z <71,<1; is assumed. This infectivity
multiplier is shown in Fig. 7 for one particular
choice of the parameters. It is worth noting that
this infectivity profile will only crudely mimic the
disease-dependent  infectivity described at the
beginning of this section. In order to model
the real disease dependence, we would need to
convolve our k(r) with the duration of infection
distribution. This greatly complicates the analysis
and, although convolving k(r) would change the
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30 2530 —— 350 45

Most active age, a, + 12

FIG. 8. The reproductive number (39) as a function of the most active age, for three different infectivity profites. Shifting the infectivity
late in infection decreases the probability that an epidemic will be able to get started, except when people are most sexually active at older
ages. In each case, the infectivity profile is flat until 4 years after infection, rises linearly until 15 years, and then is constant again. There
is no initial peak. The three cases represent the different ratios beiween the late and early values. The profile is constant in the upper curve,
and the ratios are 5 and 10 for the lower curves, respectively. The most likely age of migration is 8,y =0-1 yrs™', the average probability

of transmission is 0-05, and the mean risk is 2 partners per year.



22 J.M. HYMAN ET AL.
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F1G. 9. The reproductive number (39) as a function of x = e, for three different widths of the initial peak. Concentrating the infectivity
earlier in infection increases the probability that an epidemic will be able to get started. In each case, the infectivity profile drops
exponentially from xg, to g, is flat until 4 years after infection, rises linearly to 10g at 15 years, and then is constant again. The value
¢ is chosen to insure that the average probability of transmission is 0-05. All parameters except the infectivity profile are the same as in

Fig. 8.

details of the infectivity profile, it would have only a
small impact on our conclusions.

Figures 69 show the impact that the functional
dependence on the duration of infection can have on
the reproductive number. In each set of figures the
mean infectivity is taken to be 0-035 per partner, the
mean risk is 2 partners/yr and g = 1/15 yrs™!, as in
example (ii). We also take o, = 6 yrs, so that 18 is the
most likely age of migration.

In Fig. 6 we examine the impact of the delay, z,
when the infectivity profile is independent of the
duration of infection [x(t) = 1]. We compare the no
delay case of example (ii) (z = 0) with a 2-year delay
(z =2). In order to study only the effects of the
functional form of the duration of infection distri-
bution, we choose the two y, parameters in such a way
that in both cases the mean duration of infection is
the same. For the 2-year delay, 3, = 0-1 yrs~!, and for
the 0 year delay, y, = 0-094 yrs~!. The calculations for
this shift are given in the Appendix. Note that v,
increases with z, since the rate of developing AIDS
after the delay must be faster in order to ensure that
the mean duration of infection remains unchanged.
The delay raises the reproductive number, as more
people are infected for at least 2 years, and thus have
an opportunity to infect someone ¢lse before develop-
ing AIDS. This shift brings the model close ta
threshold [In(R) = 0] for the set of parameters chosen
here.

In Fig. 8 and Fig. 9, we examine the dependence of
the reproductive number on the infectivity profile.
Taking z =2, y, =01 yrs™', and all other parameters
the same as for Fig. 6, we modify the infectivity
multipler, # = §, in such a way that the mean infectiv-
ity stays constant at 0-05 per partner (sce the Appen-
dix). In Fig. 8, we assume that there is no initial peak
{r, =0), and look at the late profile. As the infectivity

shifts more towards long durations of infection, the
reproductive number decreases. Fewer infections are
transmitted in the first few years after infection, and
presumably there is a greater chance for chains of
infection to be broken via deaths, even though the
mean number of partners infected per person is the
same.

Finally, in Fig. 9 we change the height of the
initial peak, relative to the rest of the infectivity
profile, as well as the width of the peak. This has
a much smaller effect than the height of the later
profile, presumably because the initial peak is fairly
narrow. Since the changes in R are small, we plot
the reproductive number instead of In(R). As more
of the infectivity shifts into the initial peak, the
reproductive number increases. This is consistent with
the findings above that the more likely it is that most
infections are transmitted soon after infection, rather
than late in disease, the greater the reproductive
number will be, all other parameters {mean infectiv-
ity, mean duration of infection, mean risk) being
equal.

Note that the impact of age-structure in this set
of examples is somewhat greater than the impact
of the duration of infection. Most models to date
have concentrated on studying the impact of the
duration of infection and the structure of risk, but
it is possible that age actually plays an equally (if
not more) important role in the dynamics of the
epidemic.

4. Continuous Rjsk Model

We now generalize the discrete risk-group model of
the previous section to allow for a continuous range
in risk values. Let r be the rate of partner acquisitions,
U=U(tar), I=Itanr), and A4=A(,a).
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Then
00tar) JUGaT) _ f(a 1)~ (uia) + At, 4, DU a7,
ot da
U(t, a4, r) = B(r), {42a)
U0,a,r)=®(a,r);
Honnr) Heann) HESLT @)+ a)it e,
ot da dt
) It a,,0,71)=0,
I{t,a,0,r)=A4{,a, Ut a,r), (42b)
I0,a,1,r)=Y¥(a,zt,r);
s o ffa—a
04(t,a)  94(t ) = —d{a)A(t,a)+ y(1, @) (¢t, a, 7, r)dr dr,
ot da o Jo
1 A(t, ag,7) =0, (420)
L A0, a,r)=0,
The infection rate is astumed to be We approximate the infection rate as before,
o o fo'—ag
At a, r)=j j' '[ Bla,a’,r,r’,1) it,a,r)= s s(rinla, r)
o dm j f n(& MUE, ) d& dn
’ ’ a JO
xn(t,a,a’, r,r’){}(\;ila'—f”:))dt da’dr’ (43) o foo (d—a
A, r x .[ j. J. f(r’)n(a’, rf)
where o0 Ja Jo
o —ap I, a’,t,r'ydz da’ dr’. 46
N(t,a’,r’)=U(t,a’,r’)+I I(t,a’, 7, r'}dr, k(@' r)ydz da’dr (6)

(442)
Bla,a’,r,r', 1) =s(r)f(r')B(a)k(z), (44b)

and

n(a,rin(a’, r)N(t,a’,7’)

I i J' n(&, MIN(L & ) dE dn
(440)

Here, n(a, r) is the total number of sexual contacts
corresponding to r;{(a) in eqn (33).

As before, threshold conditions are determined by
studying the behavior of the model near the infection-
free equilibrium [U = U%a,r), 1 =0,4 =0], where
now

a(t,a,a’,r,r’)y=

U%a,r)= B(re M« 4 g~ ¥ J‘ A(x, r)et9 dx.
4y
(45)

This model is a special case of a model proposed by

Busenberg and Castillo-Chavez (1991), if one ailows

the migration function A in their model to have a

delta function at age a,, and shifts age to be 0 at 4.

They give a threshold condition for the case fi(a’,

r’, 1), rather than the case described by eqn (44b).
The linearized equations are

Ou O @ = At a, YU, ), (A7)
ot da
al ol ol
wtamtan" —(ula) +y(t)i,
1(t,,0,r) = X(t, a4, r)U%a, 1), (470)
YR
'—aT + 5‘5 = —é(a)A +
‘[ J‘ It ) dedr. (470
0 [1]
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By proceeding as in previous sections, the stability of the infection-free equilibrium for the AIDS model eqn

(42) is determined by the reproductive number

R=

r s(r)f(r)r nla, r) r—%x(f)ﬁ(u — Onla —1, P-4 U — 1, r) dt da dr

'[ J n(a, r)U%a, r)da dr
0 dy

5. Non-random Mixing

A number of modelers have demonstrated that
biases in partner selection can have a major impact on
the initial behavior of the epidemic and even change
initial growth from exponential to polynomial
(Jacquez er ai., 1988; Hyman & Stanley, 1988, 1989).
Data on the sexual behavior of heterosexuals shows
a strong age-bias in partner choice (UN, First Mar-
riage paper, 1988; Giesecke et al., 1990). The Longi-
tudinal AIDS Impact Project found a similar bias in
homosexual men (Morris, 1993). We relax the as-
sumption of proportionate mixing in the final model
of this paper and discuss the implications of partner
selection on the threshold conditions and early epi-
demic growth. Although the resuits presented in this
section could be generalized to multiple or continucus
risk groups with duration of infection effects, to
simplify the analysis we take the special case of a
single risk group {L = 1) and no duration of infection.
In this special case, we can drop the index i in eqn (1)
and the rate of infection given by egn (2) becomes

It a)
N(na)

Aft, a)=j‘Eﬂ Bla, ayn{u, a’, t) da’.

We assume, as in Section 2, that

Bla,a’)= f(a),

but generalize the expression [eqn (3)] for the rate of
pair formation, = (a, ', 1), to allow sexual partners to
be chosen in a biased manner.

We examine a special subset of biased-mixing func-
tions, To motivate our choice of restrictions, note that
eqn (3) can be rewritten in the form

n{a, a’, 1y = F[N, a]F[N, a'IN(t,a"),
where

r(a)

\/Jx r(x)N(t, x)dx

is a functional of the population distribution, N, and
the age a. This expression shows that for random
mixing n(?, a,a’) is separable into factors which are
functions of either a or ¢’, and whose only depen-
dence on time is through the total population N(¢, a).

FIN,a} =

(48)

This property of separability was crucial Lo the pro-
cedures used to determine the threshold conditions in
the preceding sections of this paper.

In order to generalize these results to a larger class
of mixing possibilities, suppose that n(a,a’,1) is a
finite sum of separable terms:

na,a’,1) = ¥, FIN, alGIN, aWN(t,a), (49)

where we assume that the ¢ dependence is only
through the total population, N(¢, a). Note that as
K — o0 this sum can approximate all continuous
functions of @ and &’. The terms F, and G, cannot be
chosen arbitrarily, because n{a, a’,t), the rate of
contact per person of age a with people of age a’,
must satisfy three well-known mathematical con-
straints; (i) the total contact rate between ages ¢ and
a’ is the per person rate multiplied by the population
of age a, =n(a,a’,t)N(a,t), but it is also
nla’,a, )N(a', 1}, i.e.

a{a,a’,t)N(@a, t)y=n(a’,a, t)N(a’,t); (50a)

(ii) because we have assumed a contact rate per
person of r(a), we must have

J n{a,a’,t)yda’ =ria), {50b)

[

and (iil) the contact rates are non-negative
nla,a’,t)=0. {50¢)

Substituting (49) into (50) gives

i F{N, a]G,[N, a’IN(1,a )N (¢, a)

= f Fi[N, a'lG[N, alN(t, a")N(t, a). (51)

The arbitrary functional dependence of the F, and G,
implies that [so long as N (¢, @) is non-zero] each term
on the left-hand side of eqn (51) must equal a term on
the right-hand side for all values of @, 2’, and N(¢, a),
N(t, a’). In other words, for each index i/, there is an
index § for which

Fi[N(Ia ﬂ), a]G',-[N(I, ﬂ’), a’]
= F[N(1,a"), &'IG/[N (1, a). a]. (52)
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and therefore G/{N, a] = F[N, a] for some index i.
The resulting terms in the sum are either symmetric,
(if i equals j, F,[N, a] = F,[N, a’]) or can be rewritten
in symmetric form:

F;[N,alF)[N,a’l + F{N, alF[N, a’]
=3(F[N, al + F[N, a)(F{N,a’] + F|[N,a’]}
—3(F[N,a]— FN, a))(F[N,a’] - Fj[N, a’]).
(53)
This allows us to assume that

1r(a, a” t) = i gEE[Nﬂ H]F',[N, a,]N(ta ﬂ"), (54)
i=1

where g, = +1.

Constraints (50b) and (50c) imply that these terms
must further be chosen to give a positive sum, m, and
to satisfy:

r(a) = i g:Fi[N, a] Jm FN(t,a’), a'IN(t,a"}da’.
i=1 4] (55)

Constraint (55) reduces the number of degrees of
freedom in the system to K — 1, For example, if K = 1
random mixing is the only possibility. For K =2,
m{a, a’, t) must have the form

nia,a’,1)=g, F[N, alF[N,a’IN(t,a’)

+ 47 (t)gla. t)g(a’, 1) (56)
where

q(ﬂ, l) = r(ta a) _g!B(t)F[Na a],

B(1) = J * FIN, xING, x) dx,

A() = JI r(x)N(, x}dx — g, BY(1),
0

g, = x 1, and F are arbitrary, except for the require-
ment that m is non-negative.

A number of people (Castillo-Chavez & Blythe,
1989; Stanley et al., 1990) have developed generic
formulas for n which satisfy these constraints, but
these formulas do not fall easily into our separable
sum framework. Our assumptions lcad to a very
special case of mixing and we leave it to future study
to determine how many terms of an expansion are
necessary for approximating any predetermined
mixing pattern.

Given eqn (54) for n, we then have that the rate of
infection given in (4} is replaced by

Mt.a)=Bla) ¥, &, FIN(, a),a)

xjxl(t,a’)F,[N(r,a’),a’] da’. (57)
0

As before, we analyze the threshold conditions by
linearizing our system of equations (1) and (57)
around the trivial equilibrium. Substituting eqn (57)
into eqn (1b} for the infected population and letting
U(t, a) = Ua) + ¢ 2i{a), I(1, a) = e~ “I(a) leads
to the linearized equation

Ha)

— = — (@ + 7@ +
a

e“fla) i g F[U%a), alUa)W;, (58)

where the single quantity ¥ in the earlier sections is
replaced by a vector with components

W,= r Ha)E[U%a’), ale" da’.  (59)

This equation has the solution

f@)=3. bia W, (60)
i=1

where

a

bf(as C) = glj ecxp(x‘ a}

ay

x B(x)F,[U%x), x]U%x) dx da.
Substituting (60) into (59) gives
K
W= 3. ac)W, (61a)
J=1
where

a{c) =g J

K]

F[U%a), ale “"b;(a, c)da. (61b)
This is a set of K equations in K unknowns, analogous
to the single eqn (16} that gives the random-mixing
threshold result.

Rewriting (61a) into matrix form gives

W = A(c)W, (62)

where W= (W,..., W) and A(c) = (a,(c)).
The eqn (62) has a non-zero solution only when

det(A(c) - D) =0. (63)

The growth rates, ¢, are then restricted by this
equation, which will have multiple roots. It is
only when at least one of these roots has a
positive real part that the infected population can
grow when the population starts near the trivial
equilibrium,

For the special case where the g, are all positive,
we can now generalize the threshold results for
random mixing, We state this as the following
theorem:
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Theorem: When the functions are chosen so that all
of the a;; are positive, the reproductive number is the
maximal eigenvalue of A(D).

To prove this, note that eqn (63) is equivalent to
1 € 6(A(c)) for some ¢, where a(A{c)) is the spectrum
of A(c). Because all elements of A(c) are positive, the
Perron—Frobenius theorem tells us that p(A(c)) is a
positive eigenvalue of A(c), and the moduli of all
other eigenvalues are less than it. Hence, we only need
to show that there exists a ¢ such that p(A(c))=1.

Denote P> Q if p,>g;. Then it follows that
p(P) > p(Q) from P > Q. Because a,(c) in eqn (61b)
are decreasing functions of ¢, we have that p(A(c)) is
a decreasing function of ¢. Using lim, _, , p(A(c)) =0,
p(A(c)y=lim,_, [|A%c)| ", and lim, . _, A(c) = co,
it follows that lim, ., __, #{A(c)) = oo. Hence, from the
continuity of A(c) for ¢, there exists a unique ¢ such
that p(A(c))=1 and p(A(0)) <1 implies ¢ <0 and
p(A(0)) > 1 gives ¢ > 0. This completes the proof of
the theorem.

6. Discussion

We have determined the threshold conditions for a
series of age-structured AIDS models. The threshold
conditions, expressed in terms of the reproductive
number, identify the qualitative relationships between
the epidemiological parameters and the growth rate
of the epidemic. Compared to the full solution of the
system of integral/partial differential equations, these
threshold conditions provide a simplified framework
to identify the important factors that drive the epi-
demic, show how the epidemic may vary as conditions
change, and can help suggest strategies for controlling
the epidemic. The sensitivity of the reproductive
number to both social and biological factors illus-
trates that these factors must be included in any
realistic model of the epidemic.

The rate of infection is a key factor in the reproduc-
tive number. It strongly depends upon social mixing
patterns and on how partnerships are formed. Most
people do not select their partners randomly from all
age and risk groups but prefer partners of similar age
and risk behavior. In our earlier work we have
numerically explored the impact of biased partner
selection; here we have determined threshold con-
ditions for a limited class of biased mixing models.

Through a series of specific parameter choices, we
examined in more depth the dependence of the
threshold condition on both the age-structure and the
distribution of parameters with duration of infection.
These examples show that the age-structure of human
behavior may be one of the most important factors
influencing the spread of the epidemic: in fact it may

be more important than the shape of the survival
curve describing the distribution of times from infec-
tion to AIDS, and the distribution of the infectivity
with duration of infection. A great deal of effort has
gone into the difficult task of determining the survival
curve from a variety of data sets, none of which
extend past 12 years after infection. Also, researchers
have tried to collect data which will allow them to
estimate the infectivity profile. It has unfortunately
proven extremely difficult to gather information on
human sexual behavior. Our work shows, once again,
that without good information on this crucial aspect
of the epidemic, it will be a long time before we may
have any idea where this epidemic is going.

This research was supported by the Department of
Energy under contracts W-7405-ENG-36 and KC-07-01-01.
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APPENDIX
Analysis of the Examples (ii) and (iii)

In this Appendix we derive the formulas for the
figures in the main text.

ANALYSIS OF EXAMPLE (ii)

Substituting B, = 0 and the rate of migration A{a),
defined by eqn (29), into eqn (5) for the equilibrium
population gives

U¥a) = 2—3"ch (x — 12)g™0 = 120em —sla—9 g,
12

(A.1)

Note that we assumed a constant out-migration rate,
#, and a minimum age of g, = 12.

Integrating (A.1) gives

& Cpy
&t — 1

x (((a —12)- a—"’)e““‘ 12z
O ft — 1

_%m e-mta- m) for a, # I
bt — 1 H
(A.2)

Since X7 2-¥ =%, summing and integrating U%a)
over all / and a gives the total population:
8 2
S e
T
Figure 1 shows the normalized population distri-
bution, £% , U}(a)/U%. Note that all risk groups have

the same functional distribution in age, with the i-th
group one-eighth the size of the i — Ist risk group.

Ulay=2""

U= (A.3)
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The mean risk of the total population is found by
multiplying the i-th population, U%(a), by its risk
r.(a), integrating over all g, and summing over all |,
then dividing the result by U%. Noting that
Zr 2 ¥=<% this yields the mean population risk

<r0> = Crrbme(ars L s ”)s (A'4a)
where we define
3 2
ooty ) = Tt B 30 20200m)

(U + po ), + o)

The mean risk is linear in the parameter C,, but its
dependence on the most likely ape of migration,
o, + 12, and most active age, «, + 12 is more complex.
In Fig. 2 we explore this dependence, by plotting the
function r,,,,, which is the same as the mean risk for
the case C, = 1. Note that the entrance age has little
impact on the mean risk unless the most active age is
larger than 30,

The reproductive number is proportional to the
population’s mean risk, so that increasing partner
acquisition rates at the population level affects the
behavior of the model in a (relatively) straight-for-
ward way. However, populations with the same mean
risk can have different reproductive numbers, and it
is important to determine how the age-structure of the
population and the distribution of sexual behavior
within a population affects the epidemic. Figures 3-5
explore this question.

Since the mean risk is proportional to C,, and
this constant does not impact the functional form of
the risk functions, we let C, vary with the other
population/risk parameters in a way that ensures
that the mean equilibrium risk is held fixed, at a value
F. Thus, in calculating Figs 3-9, C, is taken to be

Cr = F/rbase(an ey H)s (AS)

so that recalculation of {r*> with this new expression
for C, yields the desired result, {r®> =7,

Since the spread of infection is initially determined
by the total levels of sexual activity, the number of
people with a given risk times that risk is a very
important quantity. This product, which we term the
total partner acquisition rate, determines the number
of new partners that are occurring in each age group.
In Fig. 3, we show the distribution of total partner
acquisition rates over age as a function of the most

active age parameter, «, + 12. What is plotted is the
product of the (now normalized) risk function and the
normalized population distribution:

r{a)YU(a) L Tuf
— 2 2i
Z U(']f' ; gam(amﬂ - l)rbm'e

x (((a ~12) -~ :""_ 1)

a"’ e—;l(a—12)
A p—1

(A.6)

i

X e —(a — 12)/a, +

x (@ — 12)e "t~ 1,

Carrying out the integrals for the reproductive
number (with C, =#/r,.) gives

R=38F(1 + pto, ) (ot + 2, (7202, + 321,00,
+ 48yal o, + 10002 o, + 4o’ + 167,07
+ 3201, poe? + 32yorl pot?
+ 4202 pla? + 022y + 3 + dyo,p
+ 60t,, 4% + Gyal p? + 607 1)
x (a? (200, + )42 + o 1)1 + 72,

-+ o Y, + 3, + 2pa,0,,)2) 7 (A7)

This reproductive number is plotted in Fig. 4, as a
function of the most active age, a, + 12, and the
migration parameter a,,.

In order to further show the possible impact of age
structure on the spread of the epidemic, in Fig. 5 we
compare the reproductive number with age-structure
to the reproductive number that would occur if the
cffect of the age-structure were only to change the
mean and variance of the risk. The Anderson et al.
reproductive number, R, is the product of the infec-
tivity f§ and the second mean of the risk £, divided by
the product of i + y and the mean risk. To find the
second mean of the risk, we multiply r,(a)’ and
U.(a)/U% together, integrate over all a4, and sum over
all i. This gives

E2 = CJZ' Ebase(ar! Wy s M) (Aga)

where we define

s 2405, + 8y, + 1607 gy, + o2 + Dot oy + 3ot por

(A.8b)

Eba.re (an am: lu) = %“ar

(20 + 2,2 + pex, )’

E,.. would be the second mean of the risk if C, were 1. Substituting (A.8a) into formula (19} for R,,
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E 78 ﬁEZ

BFEbase(ari L Ju)

2402 4 8o o, 4+ 1622 por 4 02 4 200 pioe? 4 o2 p2e?

+7) - (u + Y)(rbase(ano:ms 'u))l’

(1 + pror, Yo+ 21,)°

18
Re=abr 1) Qo+ 2,2 + i, i, + 3ty 10
The reproductive number from (A.5) and the An- = B K,y ky k1,10, 1)
! . (A.l4a)
derson et al. reproductive number from (A.10) are gLy, z2)
compared in Fig. 5.
where
ANALYSIS OF EXAMPLE {ii) K, v,k ks Ty, 12, 13)
In this example, the equilibrium populations and
risks are the same as in example (ii), implying that the — jx K(t)ebm + eI dn qq
expression for the mean risk is given by eqn (A.4). ©
However, now y and k are no longer constants, but pk, ~ 1 7e
instead depend on the duration of infection, 7. In = w(l + uk,)_ Wi+,
order to decouple the effects of this t dependence
from magnitude effects, we need expressions for the k(e W n) — g in)
mean duration of infection and the mean infectivity. (A.14b)

In example (ii), the mean duration of infection is
1/(¢ + ), and the mean infectivity is simply 8. For
example (iii), the probability density distribution of
exit times to AIDS is
_e —HT = Iof{x]d-‘?

G(t) = (A.11)

where
0 T
= e~# - lovmar g
0

The mean duration of infection, 1, is the integral
over all T of tG(r). For example (iii):

1 1
F,v,z2)=—(1-e*)+ e (A12
(s 1 P S ( )

T,y \p? i ht+H#
—l (z +l)e"")). (A.13)
U 2

In Fig. 6 we show the impact of a 2-year delay
(z = 0) on the reproductive number, when the infec-
tivity is independent of the duration of infection. All
parameters except z and y, are the same in both cases,
For the case z = 2 yrs, we took y, = 0-1 yrs~'. For the
case z =0, y=1/T —p, and we set it equal to
0095 yrs~' in order to ensure the same mean duration
of infection as for the case z = 2. The mean infectivity
B is the integral over all T of B(z)G(z). For this
example, this mean infectivity is

giving

Ty, 2) =

(u +}’1)(TJ_T1)

For Figs 8 and 9, we have chosen to fix the mean
infectivity, B, at 0:05 per partner. We do this math-
ematically by constraining the parameter f,, which
appears linearly in {A.14a), to vary with the other
parameters. Inverting (A.14a) gives

Bils vis ki ko 15 10 T3)

r(.ue ?h Z)
Ky, ?I»klskb Tys Ta, T})

where I' is given by (A.12) and K is given by (A.14b).
This choice of f, then ensures that the duration of
infection impacts are disasscciated from the mean
infectivity levels. As in example (i), we also take C,
to be given by (A.5) in order to ensure that the mean
risk is independent of the parameter choices.

The reproductive number for example (iii) is found
by substituting our parameter choices into eqn (3).
Before we do this substitution, let us rewrite eqn (3)
in a different form.

First we change variables from a to x = a4 + &, and
then change the order of integration. These two
changes give

R= <r°>U5’-,z. i J ‘”L

X r(x +ag)B(x +a,—t)r(x +ay— 1)

=0-05 (A.15)

% e—ﬁ, Gles +x+ag T4 pe + X fag - Ve

x UM(x +a,— 1) dx dz. {A.16)
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Making one more variable change to y = x — 7 gives

R_thls}fj K(T)J.

Xr{y +1+a)B{x +a.)r(y +ay)
X @ JoAre 4 +a0)+ ple 4y +ag) e
x UMy +ap) dy dr.

Next, note that for our example ¢ and § = §, are
constant, y s independent of age, and s; and f; are
both 1, This gives

(A.1T7)

K(I) J.m ri(y + 1+ a)r(y + ap)
0

x e~ & -w0(y 4 g.) dy dr.

R= <r°>U°T,§

(A.18)

Substituting the functions r;(a) and U{a) for our
example into (A.18) yields

R=D ro x(r)e‘IBr(vm—{ywa,)ery(y +1)e" v
0 0

x ((y — Cle™m + Ce~#)dy dz, (A.19)

where we define

and

B.C2C,C Y 27
= =0
b oSS

This constant D can be rewritten in terms of the
parameters of this example by substituting the ex-
pressions calculated above for 8,, U%, C,, and {r,).
Doing this gives

D =005 x

Tul (u, y,)CF
4‘1&2th(#’ Yl! kh kl! Th TZ! t])(("B)(l! an ams ""'))2
(A.20)
Expanding expression (A.19) for the reproductive

number allows us to separate the 7 and y
integrals:

RZD(J.C'o K(teﬂam-m-~(p+u=,kdr j yleg i
0 0

X ((y — Cle™**m 4 Ce ) dy

ac ad
+ .[ i (t)e Jertd — e+ lin it g J. y e 2
0 0

X ((y — C)e™"n + C e™) dy). (A21)

The first of these four integrals (two integrals over
T and two integrals over y) is the same as K, given
by (A.14b), except that p is replaced with u + 1/a,.
We let the second integral over 7 be denoted by J, and
the two integrals over y be denoted by 4 and B.
This gives the reproductive number plotted in Figs 8
and 9:

Rz D(K(,u '+' lja,., ?l’ k|,k2, T, tz, t;)A
+J(u + Vo, 7, ki, Ky, 71, T2, T3)B),

where we define 4, B, and J as

(A.22)
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Note that, as with K, the parameter dependence of
J 1s shown because in expression (A.22) for the
reproductive number, the parameter u that appears in
the definition of J is replaced by u + 1/e,. In order to
express J, we further define the five duration-depen-
dent integrals
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In Fig. 6, we look at the impact of z when the
infectivity is independent of 7, by setting 7, = 0 and
k,=1. In Fig. 8, we continue to assume that 7, =0,
but allow k&, to vary. In Fig. 9, we set up the
parameters for k() in the following way:

ki=1/In{x) and k,=10x,

so that the infectivity profile drops from §, at the start
of infection of f,/x at 7,, stays at §,/x until 7,, and
then linearly increases to 10§, /x at 7. After that it is
flat again. Recall that f, is varying with x in such a
way that the mean infectivity stays constant at 0-05
per partner. Thus at x increases, more and more of the
infectivity profile is contained in the times shortly
after infection. Likewise, as t; increases, more and
more of the infectivity is also contained in the region
shortly after infection, and it is also more likely that
a new partner will be encountered during the initial
infectious period.



